Q) Evaluate : (cos 450 + sin 600) / (sec 300+ cosec 300).

Ans:

We know that: cos 450 = \frac{1}{\sqrt 2}; sin 600 = \frac{\sqrt 3}{2}; sec 300 = \frac{2}{\sqrt 3}; cosec 300 = 2

By submitting these values in the given expression, we get:

(cos 450 + sin 600) / (sec 300+ cosec 300)

= \frac{(\frac{1}{\sqrt 2} + \frac{\sqrt 3}{2})}{(\frac{2}{\sqrt 3} + 2)}

= \frac{(\frac{2 + \sqrt 6}{2\sqrt 2})}{(\frac{2 + 2 \sqrt 3}{\sqrt 3})}

= \frac{(\sqrt 3)(2 + \sqrt 6)}{(2\sqrt 2)(2 + 2 \sqrt 3)}

= \frac{(2 \sqrt 3 + \sqrt 18)}{(4\sqrt 2 + 4 \sqrt 6)}

= \frac{(2 \sqrt 3 + 3\sqrt 2)}{(4\sqrt 2 + 4 \sqrt 6)}

Please do press “Heart” button if you liked the solution. 

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top