Q) If sin θ + cos θ = √3, then prove that tan θ + cot θ = 1
Q29 A – Sample Question Paper – Set 1 – Maths Standard – CBSE 2026
Ans:
Given: sin θ + cos θ = √3
Step 1: By squaring on both sides, we get:
∴ (sin θ + cos θ)2 = (√3)2
∴ sin2 θ + cos2 θ + 2 sin θ cos θ = 3
∵ sin2 θ + cos2 θ = 1
∴ 1 + 2 sin θ cos θ = 3
∴ 2 sin θ cos θ = 2
∴ sin θ cos θ = 1 ……….. (i)
Step 2:
We need to prove that tan θ + cot θ = 1
Let’s start from LHS:
LHS = tan θ + cot θ
= (sin θ / cos θ) + (cos θ / sin θ)
= (sin2 θ + cos2 θ) / sin θ . cos θ
= 1 / sin θ . cos θ
By substituting value of sin θ . cos θ from equation (i), we get:
LHS = 1 / 1
= 1 = RHS
Hence Proved!
Please press the “Heart”, if you like the solution.