Q) If tan θ =
, then show that = ![]()
Ans: Given that, tan θ = ![]()
cot θ = √7
Let’s start from numerator of LHS:
cosec2 θ – sec2 θ = (1 + cot2 θ) – (1 + tan2 θ)
= cot2 θ – tan2 θ
= (√7)2 – ![]()
= 7 – ![]()
=
………………… (i)
Similarly, let’s solve denominator of LHS:
cosec2 θ + sec2 θ
= (1 + cot2 θ) + (1 + tan2 θ)
= 2 + cot2 θ + tan2 θ
= 2 + (![]()
= 9 + ![]()
=
………………….. (ii)
Now, let’s put the values from equation (i) and equation (ii) in LHS, we get:
LHS = ![]()
= ![]()
=
….. RHS…. Hence Proved !
