Q) Prove that (cos A – sin A + 1) / (cos A + sin A – 1) = cosec A + cot A

Q29 B– Sample Question Paper – Set 1 – Maths Standard – CBSE 2026

Ans: 

Let’s start from LHS:

LHS = (cos A – sin A + 1) / (cos A + sin A – 1)

To normalize the denominator, let’s multiple numerator and denominator both by (cos A + sin A + 1):

LHS = (cos A – sin A + 1) / (cos A + sin A – 1)  x (cos A + sin A + 1) / (cos A + sin A + 1)

= (cos A – sin A + 1)  x (cos A + sin A + 1) / (cos A + sin A – 1) (cos A + sin A + 1)

= ((cos A + 1) – sin A)  x ((cos A + 1) + sin A) / ((cos A + sin A) – 1) ((cos A + sin A) + 1)

= ((cos A + 1)2 – sin2 A)  / (cos A + sin A)2 – 1)

= (cos2 A + 1 + 2 cos A – sin2 A)  / (cos2 A + sin2 A + 2 sin A cos A – 1)

Since cos2 A + sin2 A = 1

∴ LHS = (cos2 A + (cos2 A + sin2 A ) + 2 cos A – sin2 A)  / (1 + 2 sin A cos A – 1)

= (cos2 A + cos2 A + sin2 A  + 2 cos A – sin2 A)  / (2 sin A cos A )

= (2 cos2 A + 2 cos A)  / (2 sin A cos A )

= (cos2 A + cos A)  / (sin A cos A )

= cos2 A / sin A cos A + cos A / sin A cos A

= cos A / sin A + 1 / sin A

= cot A + cosec A = RHS

Hence Proved!

Please press the “Heart”, if you like the solution.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top