Q) Find \frac{dy}{dx}, if (\cos x)^y = (\cos y)^x

Ans: 

Given (\cos x)^y = (\cos y)^x

Taking log both sides

log (\cos x)^y = log (\cos y)^x

Since log (a) b = b. log a

∴ y log (cos x) = x log (cos y)

Differentiating both sides w.r.t. x

\frac{d}{dx} (y log cos x) = \frac{d}{dx} (x log cos y)

\frac{d (y)}{dx} . log cos x + \frac{d (log \cos x)}{dx} . y  = \frac{d (x)}{dx} . log cos y + \frac{d (log \cos y)}{dx} . x

\frac{dy}{dx} . log cos x + \frac{1}{\cos x} . \frac{d (\cos x)}{dx} . y  = 1 . log cos y + \frac{1}{\cos y} . \frac{d (\cos y)}{dx} . x

\frac{dy}{dx} . log cos x + \frac{1}{\cos x}. (- sin x) . y  = log cos y + \frac{1}{\cos y} . \frac{d (\cos y)}{dx} . \frac{dy}{dy}. x

\frac{dy}{dx} . log cos x – tan x . y  = log cos y + \frac{1}{\cos y} . \frac{d (\cos y)}{dy} . \frac{dy}{dx}. x

\frac{dy}{dx} . log cos x – y tan x  = log cos y + x . \frac{1}{\cos y} . (- sin y) . \frac{dy}{dx}

\frac{dy}{dx} . log cos x – y tan x  = log cos y – x tan y . \frac{dy}{dx}

\frac{dy}{dx} . log cos x + x tan y . \frac{dy}{dx}  = log cos y  + y tan x

\frac{dy}{dx} ( log cos x + x tan y)  = log cos y  + y tan x

\frac{dy}{dx} = \frac{(log \cos y  + y \tan x )}{ ( log \cos x + x \tan y) } …. Final Answer

Please press Heart if you liked the solution.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top