Q) If a cos A + b sin A = m and a sin A – b cos A= n, then a² + b² = ?
Ans:
Step 1: Let’s start with 1st equation:
a cos A + b sin A = m
By squaring both the sides of the equation, we get:
(a cos A + b sin A)2 = m2
∴ a2 cos2 A + b2 sin2 A + 2 a cos A . b sin A = m2 ………….. (i)
Step 2: Second equation we have: a sin A – b cos A= n
By squaring both the sides of the equation, we get:
(a sin A – b cos A)2 = n2
a2 sin2 A + b2 cos2 A – 2 a sin A . b cos A = n2 ……… (ii)
Step 3: By adding equation (i) and equation (ii), we get:
(a2 cos2 A + b2 sin2 A + 2 a cos A . b sin A) + (a2 sin2 A + b2 cos² A – 2 a sin A . b cos A) = m2 + n2
∴ a2 cos2 A + b2 sin2 A + 2 a b cos A sin A + a2 sin2 A + b2 cos2 A – 2 a b sin A cos A = m2 + n2
∴ a2 cos2 A + b2 sin2 A + a2 sin2 A + b2 cos2 A = m2 + n2
∴ a2 (cos2 A + sin2 A) + b2 (sin2 A + cos2 A) = m2 + n2
Since, sin2 A + cos2 A = 1
∴ a2 + b2 = m2 + n2
Please press the “Heart” button if you like the solution.