Q)  If sin A =  and cos B =
 and cos B =  , then find the value of (tan A + tan B)
, then find the value of (tan A + tan B)
Ans: We To find the value of tan A + tan B, we need to find the value of tan A and tan B
Step 1: We are given sin A = 
We know that sin2 A + cos2 A = 1
∴  + cos2 A = 1
 + cos2 A = 1
∴ cos2 A = 1 – 
∴ cos A = 
Now, tan A = 
By substituting value of sin A and cos A in above equation, we get:
tan A = 
Step 2: Next, we have cos B = 
∵ sin2 B + cos2 B = 1
∴ sin2 B +   = 1
 = 1
∴ sin2 B = 1 – 
∴ sin B = 
Now, tan B = 
By substituting value of sin B and cos B in above equation, we get:
tan B = 
Step 3: Let’s find the value of (tan A + tan B) by substituting the values from step 1 and step 2:
(tan A + tan B) = 
=
Therefore, the value of (tan A + tan B) is 1 
Please press “Heart” button if you like the solution.
