Q) Let 2A + B and A + 2B be acute angles such that sin (2A + B) = √3 / 2 and tan (A + 2B) = 1. Find the value of cot (4A – 7B).
PYQ: 30 (b) – CBSE 2025 – Code 30 – Series 5 – Set 1
Ans: Let’s start solving given conditions one by one:
Step 1: Since sin (2 A + B) = √3 / 2
we know that sin 600 = √3 / 2
∴ sin (2 A + B) = sin 600
∴ 2 A + B = 600 …………… (i)
Step 2: Since tan (A + 2 B) = 1
we know that tan 450 = 1
∴ tan (A + 2 B) = tan 450
∴ A + 2 B = 450 …………… (ii)
Step 3: Let’s find values of A and B by solving equations (i) and (ii):
We multiply equation (i) by 2, we get:
2 A + B = 600 …………… (i)
∴ (2 A + B) 2 = 600 x 2
∴ 4 A + 2 B = 1200 ……… (iii)
Next, we subtract equation (ii) from equation (iii), we get:
(4 A + 2 B) – (A + 2 B) = 1200 – 450
∴ 4 A + 2 B – A – 2 B = 750
∴ 3 A = 750
∴ A = 250
Next, by substituting value of A in equation (i), we get:
2 A + B = 600 ………….. (i)
∴ 2 (250) + B = 600
∴ 500 + B = 600
∴ B = 600 – 500
∴ B = 100
Step 4: Next, we find the value of (4A – 7B):
4 A – 7 B = 4 (250) – 7 (100) = 1000 – 700 = 300
∴ Value of cot (4 A – 7 B) = cot 300 = √3
Therefore, the value of cot (4 A – 7 B) is √3.
Please do press “Heart” button if you liked the solution.