Q) Prove that:  \frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta}

Ans: Let’s start from LHS

\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta}

= \frac{\frac{\sin \theta}{\cos \theta}}{1 - \frac{\cos \theta}{\sin \theta}} + \frac{\frac{\cos \theta}{\sin \theta}}{1 - \frac{\sin \theta}{\cos \theta}}

= \frac{\sin^2 \theta}{\cos \theta (\sin \theta - \cos \theta)} + \frac{\cos^2 \theta}{\sin \theta (\cos \theta - \sin \theta)}

= (\frac{1}{\sin \theta - \cos \theta}) (\frac{\sin^2 \theta}{\cos \theta} - \frac{\cos^2 \theta}{\sin \theta})

= (\frac{1}{\sin \theta - \cos \theta}) (\frac{\sin^3 \theta - \cos^3 \theta}{\sin \theta \cos \theta})

We know that, a3−b3 formula is = (a−b)(a2 + b2 + ab)

\therefore  (\frac{1}{\sin \theta - \cos \theta}) (\frac{(\sin \theta - \cos \theta)(\sin^2 \theta + \cos ^2 \theta + \sin \theta cos\theta)}{\sin \theta \cos \theta})

= \frac{(\sin^2 \theta + \cos ^2 \theta + \sin \theta cos\theta)}{\sin \theta \cos \theta})

= \frac{(1 + \sin \theta cos\theta)}{\sin \theta \cos \theta})

= \frac{1}{\sin \theta cos\theta} + \frac{\sin \theta cos\theta}{\sin \theta \cos \theta}

= sec θ  cosec θ + 1

= 1 + sec θ  cosec θ = RHS

Hence Proved 

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top