Q) Solve for x and y : √2 x + √3 y = 5 and √3 x – √8 y = -√6
PYQ: Q 21 (b) – CBSE 2025 – Code 30 – Series 5 – Set 1
Ans:
To solve for x and y, we need to solve the given system of equations:
√2 x + √3 y = 5 …………….. (i)
and √3 x – √8 y = – √6 ………………. (ii)
Step 1: Let’s start by simplifying the equation (ii), we can write it as:
√3 x – 2 √2 y = – √6 …………………… (ii)
Step 2: Since we need to solve this set of equations for values of x and y, let’s solve for y first.
To do this, we need to equal the coefficients of x and then subtract one equation form other to cancel out x:
∴ First, we multiply equation (i) by √3 and multiply equation (ii) by √2, we get:
∴ √3 (√2 x + √3y) = 5 (√3)
∴ √6 x + 3 y = 5 √3 ………………. (iii)
Similarly, √2 (√3 x – 2 √2 y) = (- √6) (√2)
∴ √6 x – 4 y = – 2 √3 …………………. (iv)
Step 3: Next, let’s subtract equation (iv) from equation (iii):
(√6 x + 3 y) – (√6 x – 4 y) = 5√3 – (- 2√3)
∴ √6 x + 3 y – √6 x + 4 y = 5√3 + 2√3
∴ 7 y = 7 √3
∴ y = √3
Step 4: Next, we substitute the value of y into equation (i) to find the value of x:
√2 x + √3 y = 5 …………….. (i)
∴ √2 x + √3 (√3) = 5
∴ √2 x + 3 = 5
∴ √2 x = 5 – 3
∴ √2 x = 2
∴ x = 2 /√2
∴ x = √2
Therefore, the value of x and y are x = √2 and y = √3.
Please press the “Heart” button if you like the solution.