Q) Through the mid-point M of the side CD of a parallelogram ABCD, the line BM is drawn intersecting AC in LL and AD (produced) in E. Prove that EL = 2BL.
Ans:Â

In Δ BMC and Δ EMD,
MC = MD (given)
∠CMB = ∠EMD             (Opposite angles)
∠MBC = ∠MED             (Interior angles)
Δ BMC ~ Δ EMD
Hence, BC = DE
But, BC = ADÂ (by ABCD is a parallelogram)
AE = 2 BC……………. (i)
∠CAE = ∠LCB                (Interior angles)
∠LBC = ∠LEA                (Interior angles)
Δ LBC ~ Δ LAE
Hence, ![]()
or, ![]()
Hence,
= 2
Therefore, EL = 2 BL   ………… Hence proved
