๐Ÿš€ Download 21 Mustโ€‘Solve Questions for Class 10 Boards!
// Add custom schema markup to homepage function saplingacademy_homepage_schema() { if ( is_front_page() ) { // Only output on homepage } } add_action('wp_head', 'saplingacademy_homepage_schema');

Q) If AP and DQ are medians of triangles ABC and DEF respectively, where โˆ†ABC~ โˆ†DEF, then prove that ๐ด๐ต/๐ท๐ธ = ๐ด๐‘ƒ/๐ท๐‘„.

[Q 23 – Sample Question Paper – CBSE Board 2026]

Ans:ย 

If AD and PM are medians Triangles CBSE 10th important questions

Step 1: Given that,ย  ฮ” ABC ~ ฮ” DEF, therefore

โˆ  B = โˆ  Eย  ย …………. (i)

and \frac{AB}{DE} = \frac{BC}{EF} …………. (ii)

Step 2: Since AP is median of BC, hence BC = 2 BP

Similarly, DQ is median of EF, hence EF = 2 EQ

Let’s substitute these 2 values in equation (ii), we get:

\frac{AB}{DE} = \frac{BC}{EF} = \frac{2BP}{2EQ}

โˆด \frac{AB}{DE} = \frac{BP}{EQ} …….. (iii)

Step 3: Let’s compare ฮ” ABP ~and ฮ” DEQ

Here, \frac{AB}{DE} = \frac{BP}{EQ}ย  ย  (already proven in step 2)

โˆ  B = โˆ  Qย  ย  ย  ย  ย  ย  ย  ย  ย  ย  ย  (identified in step 1)

โˆด ฮ” ABP ~ ฮ” DEQย  ย  ย  ย  ย (by SAS similarity)

Therefore, \frac{AB}{DE} = \frac{AP}{DQ}

Hence proved.

Please press the โ€œHeartโ€ button if you like the solution.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top