Q) If a cos θ + b sin θ = m and  a sin θ – b cos θ = n, then prove that a2 + b2 = m2 + n2

Ans: Since a cos θ + b sin θ = m 

By squaring on both sides, we get:

(a cos θ + b sin θ)2 = m2 

a2 cos2 θ + b2 sin2 θ + 2 a b sin θ cos θ = m2   …………… (i)

Similarly, another given condition is:

a sin θ – b cos θ = n

by squaring on both sides we get:

(a sin θ – b cos θ)2 = n2

a2 sin2 θ + b2 cos2 θ – 2 a b sin θ cos θ = n2   …………… (ii)

By adding both equations (i) and (ii), we get:

a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ) = m2 + n2 

Since, sin2 θ + cos2 θ = 1

Therefore, a2 + b2  = m2 + n2

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top